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LElTER TO THE EDITOR 

Critical slowing down in a randomly biased percolating system 
at percolat ion threshold 

R B Pandeyt 
Department of Physics and Atmospheric Sciences, Jackson State University, Jackson, MS 
39217. USA 

Received 28 November 1986 

Abstract. Using computer simulation, a random walk motion is studied in a random 
percolating system at percolation threshold in the presence of a random field. The RMS 
displacement is found to decrease systematically as a function of field strength and shows 
a non-universal power law dependence on it. The long time behaviour seems similar to 
the critical slowing down recently predicted in an analogous magnetic system. The spectral 
dimensionality varies with the field strength and is found to be less than 1. 

Although the thermodynamics of the Ising model and diffusion in percolating 
systems seem quite different, they share some common features: the manner in which 
the thermal fluctuations develop in an Ising model and the way the root mean square 
( RMS) displacements increase in percolating systems as the time increases seem to 
behave similarly. In fact, for the last few years it has been believed that the dynamic 
scaling (Hohenberg and Halperin 1977) exponent z for a homogeneous thermal system 
( T - 6: with T the relaxation and 6, the thermal correlation length) is analogous to the 
asymptotic power law exponent or walk dimension in anomalous diffusion (Alexander 
and Orbach 1982, Gefen et a1 1983, Rammal and Toulouse 1983, Pandey et a1 1984, 
Havlin and Ben-Avraham 1983, Stauffer 1985a, b) in percolating systems R - t k  ( k  = 
l / z )  where R is the RMS displacement in time t .  (The dynamical scaling has also been 
used to describe a variety of systems including kinetic growth and ungrowth in recent 
years (Kerstein 1986, Vicsek and Family 1984).) Let us attempt to trace out a possible 
one-to-one correspondence between the two phenomena. In the Ising model, thermal 
fluctuations are caused by flipping the spins (up or down), while in a percolating 
system, geometrical fluctuations are caused by adding or removing the sites (occupied 
or empty sites in a binary system). Both excitations are of local nature and are related, 
since in the dilute Ising model the percolation crossover exponent 4 (the ratio of the 
percolation correlation length exponent and the thermal correlation length exponent) 
is unity (Stinchcombe 1983). It is therefore intuitive to believe that the thermal 
fluctuations propagate through the thermal clusters (of up or down spins) almost in 
the same fashion as a diffuser passes through the percolating cluster (the conductivity 
of a connected path depends upon the geometrical fluctuations). Now, if a random 
magnetic field is present at each site in the Ising model, then one may argue that it 
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may affect the thermal fluctuations in the same way as a random electric field affects 
the diffuser in percolating systems. 

Using scaling theory supported by renormalisation group arguments Fisher ( 1986) 
has recently predicted that in a random field Ising model, the relaxation time 7 for 
the thermal fluctuations diverges exponentially with the thermal correlation length 6, 
as the thermal critical point is approached. Here we present results from our computer 
simulations for the random walk motion in percolating systems to see whether a similar 
critical slowing down occurs for the anomalous diffusion in percolating fractals in the 
presence of random fields. Our randomly biased diffusion is related to ordinary biased 
diffusion (Barma and Dhar 1983, Pandey 1984, Stauffer 1985a, b)  in the same way as 
the Ising model in a random field is related to that in a homogeneous field, or as 
resistor-diode networks with random orientation of the diodes are related to networks 
with all diodes oriented in the same direction (Redner 1982). 

We consider a simple cubic lattice. A fraction p of these sites chosen randomly 
are occupied and the rest of the sites of concentration 1 - p  are empty. Clusters (Stauffer 
1985a,b) (formed by joining the nearest-neighbour sites) of various sizes appear. The 
motion of a particle is restricted only to the occupied sites. We will concentrate here 
on the critical concentration pc  where an  infinite cluster (along with many smaller 
clusters of various sizes) appears for the first time on increasing the concentration of 
the occupied sites from p below p c .  (For the simple cubic lattice pc=0.3117.) Each 
of the occupied sites is then assigned one of the six directions chosen randomly. A 
particular value is set for the field intensity B which determines the probability that 
a particle once at a site will attempt to hop  in its preset random direction. One of the 
occupied sites (called the local origin), say i, is chosen randomly and a particle (diffuser 
or ‘ant’) is placed on it. To decide in which direction it will attempt to jump, a 
pseudorandom number is selected and compared with B ;  if it is less than B, then the 
neighbouring site j in the preassigned direction from the site i is chosen. Otherwise 
any of the six neighbouring sites, say k, is chosen randomly. If the hopping site j or 
k (chosen according to the prescription) is occupied then the random walker is moved 
to it; otherwise the diffuser stays at its old site i. The time is increased by unity in 
either case. The process of selecting a prescribed neighbouring site, an  attempt to 
move the particle to it and updating time and  displacement is repeated again and again 
for a preset (maximum) number of steps. This whole procedure is repeated for several 
local origins and for many independent samples to obtain a reliable estimate for the 
average of the quantities such as R M S  displacement, number of distinct visited sites, 
etc. A sample is prepared by occupying sites of concentration p c  and assigning random 
directions to them as described above. We have used periodic boundary conditions 
on a 50 x 50 x 50 cubic lattice. 

In the absence of a random field (i.e. B = 0), the random walk motion in a percolating 
system is well understood at  p = p c ,  where the infinite cluster is self-similar up to 
infinite length scale. Scaling arguments (Gefen et al 1983), verified by computer 
simulations (Pandey et a1 1984, Havlin and Ben-Avraham 1983), suggest an anomalous 
power law behaviour for the R M S  displacement R - t k ,  with 2 k  = ( 2 v  - p ) / ( 2 v + p  - p ) ,  
where v and /? are the percolation correlation length and volume fraction exponents, 
respectively, and p is the conductivity exponent. Thus in d = 3 ,  k - 0 . 2 ,  as is also 
verified in our simulation here (see figure 1). When switching on a small random field 
(of strength B = 0.1) we observe a decrease in the magnitude of the R M S  displacement, 
as well as in its asymptotic power law exponent k. As is evident from figure 1, the 
trend of slowing down motion continues systematically as the magnitude of the random 
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Figure 1. R / J M  against f plot on a log-log scale, R = RMS displacement, M =number 
of local origins, ( N ) X  = number of samples (run). Sample size 50x 50x 50. The field 
intensities are B = 0.0, 0.1, 0.3, 0.4,0.5, 0.6, and 0.7 for N = 50, run = 20. The insert shows 
a typical variation of the effective exponent -10 k (0)  and k‘ (0) (see text) with time t 
on a semilog scale. 

field strength B increases. Furthermore, if we fit these data with R - t k ,  then we obtain 
different values of the exponent k for different values of B. For example, at B = 0.4, 
kz0 .12 ,  while at B=O.7 a much smaller (varying) value of k is obtained (see the 
insert of figure 1). At higher values of B, the motion becomes too slow and perhaps 
the relaxation time becomes very large. Finally at the extreme value of B ( = l ) ,  k 
becomes zero. We have calculated the power law exponent k at different time intervals 
and, at E = 0.7, variation of the effective k with time t is shown in the insert of figure 
1. The continuously decreasing magnitude of k with t seems to suggest that either we 
are not in the asymptotic regime, or the simple power law R - t k  does not hold. 

Based on the recent scaling arguments (Fisher 1986), if we assume a logarithmic 
variation of the RMS displacement, R - (lnt)k’, then we obtain a variation in the effective 
exponent k’, as shown in the insert of figure 1 for B = 0.7. It appears that k‘ -- 1.25 * 0.1 
for the time regime up to t - 5 x lo5 and thereafter there is a sharp drop in its value 
kf=0.75*0.1.  Such a sharp change is also observed in the variation of the effective 
power law exponent k in the same regime. Thus, the simulation data suggest two types 
of relaxation with two exponents (for the faster relaxation is followed by the slower). 

If we use the relation (Alexander and Orbach 1982, Rammal and Toulouse 1983) 
S - t d s ’ 2  for the number of distinct visited sites S in time t ,  we may evaluate the spectral 
dimensionality d , .  A plot of S against t on a log-log scale is presented in figure 2. 
For the typical field intensities B = 0.4 and 0.7, the effective spectral dimensionality 
turns out to be about 0.57 * 0.03 and 0.39 * 0.03, respectively. On the other hand, the 
Alexander-Orbach conjecture (Alexander and Orbach 1982) suggests a superuniversal 
value d,  = $ for the percolating systems at percolation threshold. The spectral 
dimensionality d,  for most of the self-similar systems (Alexander and Orbach 1982, 
Rammal and Toulouse 1983, Mandelbrot 1984) seems to lie between 1 and 2, while 
in a local symmetric breaking percolating system as we see here the spectral 
dimensionality is less than one and that, too, it depends on the field intensity. Very 
recently, in a different context, the systems, which have spectral dimensionality less 
than one, have been called (Kopelman et a1 1986) ‘fractal dust’. In our case, it is 
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Figure 2. Number of distinct visited sites S against t /  lo3 log-log plot for the field intensities 
given with the data points. Statistics are the same as in figure 1 .  

tempting to call such a system (a random field percolating system) 'fracton glass'. 
Here, the percolating fractal is known to be a homogeneous self-similar quenched 
random system (Leyvraz and Stanley 1983) and the inhomogeneity is caused by the 
random bias field. Note that in percolating systems below their percolation threshold 
the spectral dimensionality is less than one, but there is no global transport. Contrary 
to this is the percolating system at percolation threshold in random biased field where 
there is a global transport. The local fields along with the random geometry introduce 
local trapping barriers, which makes the transport too slow to distinguish from the 
metastability as in glasses (Edwards and Anderson 1975). 
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